(Ne)dovršena priča o stilu F. M. Dostojevskog / The (un)finished story of F. M. Dostoevsky’s style

نویسندگان

چکیده

The paper explores F. M. Dostoevsky’s style from the contemporary semantic-stylistic research perspective. Based on canonical work of Bakhtin Dostoevsky and recent corpus-semantic explorations language, aims to show how microelements at different language levels can be regarded as stylemes build unique style, harmonized with main idea works. focuses stylistic effects intensifiers their unusual collocations, specific usage particles. From critical stylistics perspective, transitivity is explored, primarily passivisation – removal agent / actor an important styleme in novels. intensified expressiveness writer’s its “theatricality”, well accelerated, sometimes broken prose rhythm, which also contributes speech characterization his heroes, analysed. It concluded that criticism not justified, because completely compliance emotional states characters key ideas

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Krasner $F^{(m, n)}$-Hyperrings

$!!!!$ In this paper, the notion of fuzzy $!$ Krasner $!(m, n)$-hyperrings($!F^{(m, n)}!$-hyperrings) by using the notion of$F^m$-hyperoperations and $F^n$-operations is introduced and somerelated properties are investigated. In this regards,relationships between Krasner $F^{(m, n)}$-hyperrings and Krasner$(m, n)$-hyperrings are considered. We shall prove that everyKrasner $F^{(m, n)}$-hyperrin...

متن کامل

M/F theory orbifolds

We consider M-theory on (T ×R)/Zn with M5 branes wrapped on R2. One can probe this background with M5 branes wrapped on T2. The theories on the probes provide many new examples of N = 2 field theories without Lagrangian description. All these theories have Coulomb branches, and we find the corresponding SeibergWitten curves. The exact solution is encoded in a Hitchin system on an orbifolded tor...

متن کامل

F P M G

In group theory, it is a fundamental question to determine what information about a group is necessary and sufficient tomake a group finitely presented. In this paper, we develop the theory of Σ-invariants due to Robert Bieri and Ralph Strebel [Bieri] whi provides an answer to this question for the class of metabelian groups. We begin our study of Σ-invariants with a digression on group extens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Radovi

سال: 2022

ISSN: ['2303-6990', '0581-7447']

DOI: https://doi.org/10.46352/23036990.2022.339